Psychiatric symptoms of schizophrenia suggest alteration of brain network. However, the physical basis of schizophrenia has not been delineated. We performed nanometer-scale 3D analysis of brain tissues of schizophrenia and control cases and found that neurites of schizophrenia cases are thin and tortuous compared to controls (figure). In this study, we visualized structures of cerebral tissues of the anterior cingulate cortex (Brodmann area BA24) and the superior temporal gyrus (BA22) by using synchrotron radiation nanotomography or nano-CT. Neuronal networks visualized in the 3D images were traced to build their Cartesian coordinate models. The obtained models were used for calculating structural parameters including curvature and torsion of neurites in order to analyze their geometry. Results of the geometric analyses indicated that the neurite curvature is significantly different between individuals and becomes extraordinary in schizophrenia. The mean neurite curvature in schizophrenia was up to 3.9 times higher than that of the control. The differences in the neurite curvature result in differences in the spatial trajectory and hence alter neuronal circuits. The curvature also inversely correlates with neurite thickness that affects the transmission of active potentials. We suggest that the structural differences of neurons between individuals represent their mental personality and hence reflect psychiatric symptoms of schizophrenia. This study is news released from
Argonne National Lab and widely mentioned in the
news media.
It's also featured in the
APS highlights.
Original papers: Transl.Psychiatry 2019
2021
(ranked top 1 percentile with Altmetrics)
YouTube: 3D image - Network.
We recently found that brain capillary structures of schizophrenia cases and controls show a correlation with their neuron structures. DOI YouTube
Multiple sclerosis is a neurological disorder in which the myelin sheaths of axons are damaged by the immune response. We recently reported a 3D analysis of brains and spinal cords of a mouse model of multiple sclerosis, known as experimental autoimmune encephalomyelitis (EAE). EAE-induced mice were raised with or without administration of fingolimod, which is used in the treatment of multiple sclerosis. Three-dimensional structures of the brain hemispheres and spinal cords of the EAE mice were visualized with synchrotron radiation microtomography. Microtomographic cross sections revealed dilation of capillary vessels and vacuolation in the spinal cord of the EAE mice. Vacuolation was also observed in the cerebellum, suggesting that the neuroinflammatory response progressed in the brain. The vessel networks and vacuolation lesions in the spinal cords were modelled by automatically tracing the three-dimensional image (left). The analysis results indicated that the distribution of vacuolations was not uniform but three-dimensionally localized. The mean vessel diameter showed a linear correlation with the clinical score, indicating that vasodilation is relevant to paralysis severity. We suggest that vasodilation and vacuolation are related with neurological symptoms of multiple sclerosis.
DOI
arXiv
PubMed
YouTube
We have also reported a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation nanotomography. A skeletonized wire model of the left half of the brain network was built by tracing the 3D image of the brain network. The obtained models of neuronal processes were classified into groups on the basis of their structures. The model structure indicated that the Drosophila brain is composed of networks with different complexity and extensity depending on the brain regions. Simple networks in the optic lobe should be appropriate for relaying information straightforwardly while intricate and widespread networks mainly in the central brain can integrate information from a number of brain regions. These structures of the reconstructed networks provide a basis for understanding how the Drosophila brain works. An article reviewing this study appeared in MIT Technology Review.
DOI
PubMed
arXiv
YouTube
Spatial resolution is the fundamental parameter in structural sciences. We developed a method for estimating the spatial resolution of real images from a logarithmic intensity plot in the Fourier domain. The logarithmic intensity plots of test images indicated that the full width at half maximum of a Gaussian point spread function can be estimated from the images themselves. The spatial resolution of imaging X-ray nanotomography using Fresnel zone-plate optics was estimated with this method. A cross section of a test object visualized with the nano-CT indicated that square-wave patterns up to 120-nm pitch were resolved. The logarithmic intensity plot was calculated from a nano-CT cross section of brain tissue. The full width at half maximum of the point spread function estimated from the plot coincided with the resolution determined from the test object. These results indicated that the logarithmic intensity plot in the Fourier domain provides an alternative measure of the spatial resolution without explicitly defining a noise criterion.
DOI
PubMed
arXiv
Scientific Reports Collection Connectomics
Movies and skeletonized models (RRID:SCR_016529)
MCTrace (RRID:SCR_016532)
RecView (RRID:SCR_016531)
Preparation of soft tissue samples
Test patterns for microtomography and nanotomography
Artificial neural network mimicking schizophrenia
Name: Ryuta Mizutani
Birth: 1967
Education:
Research experience:
Membership:
Home -
publication -
movies/models -
test patterns
GitHub -
RecView -
MCTrace -
Schizophrenia AI -
Bluetooth dialbox
MizutaniLab -
Dept of Applied Biochemistry -
Dept of Bioengineering [jpn]
-
Sch of Engineering [jpn]
-
Tokai Univ